Anomaly Detection using Deep Auto-Encoders

One of the determinants for a good anomaly detector is finding smart data representations that can easily evince deviations from the normal distribution. Traditional supervised approaches would require a strong assumption about what is normal and what not plus a non negligible effort in labeling the training dataset. Deep auto-encoders work very well in learning high-level abstractions and non-linear relationships of the data without requiring data labels. In this talk we will review a few popular techniques used in shallow machine learning and propose two semi-supervised approaches for novelty detection: one based on reconstruction error and another based on lower-dimensional feature compression.